105 cheat sheet 0

bridging

Exponents

an=a multiplied n timesa^n = \text {a multiplied n times}

if a is a negative integer:

a−n=1an=1a multiplied n timesa ^{-n} = \frac {1} {a^n} = \frac {1} {\text {a multiplied n times}}

If a = 0

  • if a is negative, answer is -1

a0=1a^0 =1

Properties of Exponents

(an)m=anm(a^n)^m = a^{nm}
anam=an+ma^na^m = a^{n+m}
anam=an−m\frac {a^n}{a^m} = a^{n-m}
(ab)n=anbn(ab)^n =a^nb^n
(ab)n=anbn(\frac {a}{b})^n = \frac {a^n}{b^n}
(ab)−n=(ba)n=bnan(\frac {a}{b})^{-n} = (\frac {b}{a})^n = \frac {b^n}{a^n}

Logarithm

x=by equivalent to y=logbxx =b^y \text { equivalent to } y=log_bx

Derivatives

Differentiation

  • 2x^2 -> 4x

e^ax -(derivative)-> a e^ax
Non decreasing gradient since function is non-negative

Integration

  • x-> x^2/2 + c

    • Where c is a constant

Last updated